پیش‌بینی خشک‌سالی با استفاده از سامانه‌ی بهره وری عصبی حالتی سازگار با محاسبه‌ی عددی فراابتکاری کلونیِ مورچه‌ها درآبخیزِ زابل

نوع مقاله : پژوهشی

نویسنده

استادیارِ بخشِ تحقیقاتِ جنگل و مرتع و آبخیزداریِ مرکز تحقیقات و آموزشِ کشاورزی و منابع طبیعی سیستان، سازمانِ تحقیقات، آموزش و ترویجِ کشاورزی، زابل، ایران

چکیده

مقدمه و هدف
استفاده از شبیه‌سازی­ های ترکیب شده با نمایه‌ی خشک‌سالی دقت پیش ­بینی را افزایش می­ دهد. رویکرد اکتشافی زمینه­ ی هشدار اثرهای خشک‌سالی و امکان ساز و کارهای حمایت­ مالی و بیمه ­ای جوامع محلی را فراهم می­ کند. مهم­ترین بخش، کاهش آثار خشک‌سالی و بهبود دقت سامانه ­های پیش‌بینی‌کننده است.
مواد و روش‌ها
در این پژوهش دقت شبیه‌سازی جدید انفیس ترکیب‌شده با محاسبه‌ی عددی فراابتکاری کلونی مورچه‌ها در پیش‌بینی خشک‌سالی با شبیه‌سازی انفیس معمولی مقایسه شد. عملکرد شبیه‌سازی با استفاده از خطای جذر میانگین مربع­ ها، میانگین مطلق خطا و ضریب تعیین ارزیابی ­شد.
نتایج و بحث
اعتبارسنجی شبیه‌سازی در نمایه‌ی 3 ماهه نشان داد اندازه‌ی خطای مطلق و خطای جذر میانگین مربع‌ها در ایستگاه زابل با کاربرد شبیه‌سازی انفیس کمتر است. در این پژوهش در آبخیز زابل، شبیه‌سازی‌های انفیس (سامانه‌ی بهره­ وری عصبی حالتی سازگار) و انفیس همراه با محاسبه­ ی عددی فراابتکاریِ کلونی مورچه‌ها برای پیش‌بینی خشک‌سالی بررسی شد. نتایج نشان داد که پیش ­بینیِ خشک‌سالی با استفاده از داده­ های بارش ماهانه­ ی ایستگاه­ های هم­دید زابل (1399-1362)، زهک (1399-1373) و روش بهینه سازیِ کلونی مورچه­ ها سبب بهبود عملکرد شبیه‌سازی انفیس شده است. اندازه‌ی آزمون ضریب تعیین پیش­ بینی شبیه‌سازی انفیس همراه با محاسبه‌ی عددی فراابتکاری کلونی مورچه­ ها در بازه­ های 3، 6، 9 و 12 ماهه، به­ ترتیب برابر با 0/738، 0/854، 0/801 و 0/898 در ایستگاه زابل و 0/792، 0/804، 0/759 و 0/887 در ایستگاه زهک بود. علاوه بر این شبیه‌سازی انفیس-کلونی مورچه‌ها ضریب تعیین بالاتری داشت. اعتبارسنجی شبیه‌سازی نمایه‌ی 3 ماهه شبیه‌سازی انفیس-کلونی مورچه‌ها اندازه‌ی خطای مطلق و خطای جذر میانگین مربع‌ها کمتر و ضریب تعیین آن بالاتر بود. در ایستگاه زهک نیز شبیه‌سازی انفیس در آموزش 3 ماهه دقت بالاتری داشت، اما در بخش اعتبارسنجی برتری با شبیه‌سازی انفیس-کلونی مورچه‌ها بود. به‌طورکلی در نمایه­ی SPI سه ماهه، آموزش شبیه‌سازی انفیس دقت بالاتری داشت اما در اعتبارسنجی شبیه‌سازی انفیس-کلونی مورچه‌ها برتری داشت.
نتیجه ­گیری و پیشنهادها
بهینه ­سازی با کاربرد کلونی مورچه‌ها مبتنی بر جمعیت داده ­ها به ­تدریج راه ­حل­ های پیشنهاد شده را به راه­ حل بهینه‌ی سراسری نزدیک می­ کند. این مسئله سبب افزایش کارایی محاسبه‌ی عددی کلونی مورچه‌ها در مقایسه با انفیس در پیش‌بینی خشک‌سالی شد. شبیه‌سازی انفیس ترکیب شده با کلونی مورچه‌ها خصوصیت کارایی برای مسائلی با مقیاس بزرگ در زمان کوتاه از روش خود تنظیمی پیشنهاد ­داد. این خصوصیت ­ها برای داده­ های طبیعی دارای الگوی هندسی نامنظم و یا داده ­های ثبت شده با حجم بالا هزینه‌ی محاسباتی را کاهش ­دادند. شبیه‌سازی­ هایی که بهینه ­سازی می­ کنند در نقاط بهینه محلی دچار خطا می­ شوند. این در حالی است که شبیه‌سازی انفیس-کلونی مورچه‌ها فضای شبیه‌سازی­ برای پیش ­بینی خشک‌سالی را سراسری ارزیابی ­کرد. مقایسه‌ی شبیه‌سازی انفیس با محاسبه‌ی عددی­ های دیگر و انتخاب بهترین شبیه‌سازی برای آبخیز زابل پیشنهاد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Drought Prediction Using Compatible Adaptive Neuro Fuzzy Inference System with the Ant Colony Optimization Algorithm in Zabol Watershed

نویسنده [English]

  • Payam Ebrahimi
Assistant Professor, Forests, Rangelands and Watershed Research Department, Sistan Agricultural and Natural Resources Research and Education Center AREEO, Zabol, Iran
چکیده [English]

Introduction and Objective
The use of simulations combined with the drought index enhances forecast accuracy. The exploratory approach provides the scope for drought warning and the opportunity for financial support and insurance mechanisms for local communities. The most important part related to the reduction of the effects of drought is the improvement of the precision of forecasting systems.
Materials and Methods
In this research, the precision of the new Anfis Simulation combined with the meta-heuristics of ant colonies in drought prediction is compared to the normal ANFIS Simulation. Simulation performance is estimated using the Mean Squared Error, Mean Absolute Error and Coefficient of Determination.
Results and Discussion
Validation of the simulation in the three month profile shows that the Absolute Error Value and the Root Mean Square Error in the Zabol Station are lower by Anfis Simulation. This article examines the Compatible Adaptive Neuro Fuzzy Inference System (ANFIS) and ANFIS models with Ant Colony Optimization Algorithm (ANFIS-ACOR) for drought forecasting. Drought forecasting was done using monthly precipitation data from synoptic stations Zabol (1983-2020) and Zahak (1994-2020). The results showed (ANFIS-ACOR) improved the performance of the Adaptive Neuro Fuzzy Inference System. The model predictive correlation test (ANFIS-ACOR) values in the 3, 6, 9 and 12-month intervals are equal to 0.738, 0.854, 0.801 and 0.898 at the Zabol Station. As well 0.792, 0.804, 0.759 and 0.887 at Zahak Station, respectively. In addition, Anfis Simulation-ant colony has a higher coefficient of determination. Validation of the simulation related to the three-month profile of Anfis-ant Colony Simulation showed that the absolute error and the Root Mean Square Error are lower and the coefficient of determination is higher. In the Zahak Station, the Anfis Simulation is more accurate in the 3-month formation, but in the validation section, the Anfis-ant Colony Simulation is superior. Overall, in the three-month SPI profile, Aanfis Simulation training is more accurate, but Anfis Colony Simulation is superior in validation.
Conclusion and Suggestions 
Ant colony optimization as a function of the data population progressively brings the proposed solutions closer to the overall optimal solution. This problem increased the efficiency of the numerical calculation of the ant colony compared with the Anfis in predicting drought. Anfis Simulation in combination with ant colony provides efficiency for large-scale problems in a short time by auto-tuning. These features reduce the cost of calculating natural data with irregular geometric pattern or data recorded in high volume. Simulations which optimize will fail at the local optimum level. Anfis-Ant Colony Simulation evaluates simulation space for predicting droughts on a global scale. This research proposes to compare the Anfis Simulation with other numerical calculations and to choose the best simulation for the Zabol Watershed.

کلیدواژه‌ها [English]

  • ANFIS
  • ANFIS-ACOR
  • drought
  • forecast
  • SPI
Abbasi A, Khalili K, Behmanesh J, Shirzad A. 2020. Application of support vector machine and bayesian network for agricultural drought prediction. Watershed engineering and management. 12(1): 107-124. (In Persian).
Aghelpour P, Bahrami Pichaghchi H, Kisi O. 2020. Comparison of three different bio-inspired algorithms to improve ability of neuro fuzzy approach in prediction of agricultural drought, based on three different indexes. Computers and Electronics in Agriculture. 170(3): 257-279.
Ali M, Deo RC, Maraseni T,  Downs NJ. 2019. Improving SPI-derived drought forecasts incorporating synoptic-scale climate indices in multi-phase multivariate empirical mode decomposition model hybridized with simulated annealing and kernel ridge regression algorithms. Journal of Hydrology. 576(1): 164-184.
Bera B, Shit PK, Sengupta N, Saha S, Bhattacharjee S. 2021. Trends and variability of drought in the extended part of Chhota Nagpur plateau (Singbhum Protocontinent), India applying SPI and SPEI indices. Environmental Challenges. 5(100310): 1-10.
Chicco D, Warrens MJ, Jurman G. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peer Review Journal Computer Science. 7(623): 1-24.
Gandomkar A, Khadem Alhosseini A. 2009. The study of precipitation changes on zabol (Iran). Environmental based territorial planning. 2(6): 65-76. (In Persian).
Jahangir M, Noorazar I, Azimi E. 2019. Analyzing time series of spi, spei and spti drought indices by using artificial neural network sofm method and numerical comparison in chaharmahal va bakhtiari. Iranian journal of ecohydrology. 6(3): 837-847. (In Persian).
Jang JSR. 1991. Fuzzy modeling using generalized neural networks and Kalman filter algorithm. Proceedings of the ninth national conference on artificial intelligence. pp.762-767.
Khadka D, Babel MS, Shrestha S, Virdis SGP, Collins M. 2021. Multivariate and multi-temporal analysis of meteorological drought in the northeast of Thailand. Weather and Climate Extremes 34(100399): 1-18.
Khan MMH, Muhammad NS, El-Shafie A. 2020. Wavelet based hybrid ANN-ARIMA models for meteorological drought forecasting. Journal of Hydrology. 590(125380): 1-14.
Kisi O, Docheshmeh Gorgij A, Zounemat-Kermani M. Mahdavi Meymand A, Kim S. 2019. Drought forecasting using novel heuristic methods in a semi-arid environment. Journal of Hydrology. 578(124053): 1-19.
Komasi M, Alami M, Nourani V. 2013. Drought forecasting by spi index and anfis model using Fuzzy C-mean clustering. Water and wastewater. 24(4): 90-102. (In Persian).
Komasi M, Malekmahmoudi M, Montaseri H. 2017. Drought forecasting by spi and edi indices using anfis method based on C-mean and sc clustering (case study: kohgiluyeh and boyer ahmad province). Journal of agricultural meteorology. 5(1): 36-47. (In Persian).
Komasi M, Sharghi S. 2020. Drought Forecasting Using Wavelet-Support Vector Machine and Standardized Precipitation Index (Case Study: Urmia Lake-Iran). Journal of environmental science and technology. 22(7): 83-101. (In Persian).
Liao T, Stützle T, Montes de Oca MA, Dorigo M. 2014. A unified ant colony optimization algorithm for continuous optimization. European Journal of Operational Research. 234(3): 597-609.
Lloyd‐Hughes B, Saunders MA. 2002. A drought climatology for Europe. International Journal of Climatology. 22(13): 1571-1592.
McKee TB, Doesken NJ, Kleist J. 1993. The relationship of drought frequency and duration to time scales. Eighth Conference on Applied Climatology. 73(10). pp.1-6.
Mishra AK, Singh VP. 2010. A review of drought concepts. Journal of hydrology. 391(1-2): 202-216.
Nadi M, Shiukhy Soqanloo S. 2020. Comparison of SPI and SPImod in Drought Monitoring of Several Climatic Samples of Iran. journal of watershed management research. 11(21): 108-118. (In Persian).
Pudineh M, Heidarinia M, Mousavi SR, Dousti Moghaddam H. 2020. Monitoring drought indicators in Zahedan at different time intervals. Natural Geography. 13(47): 133-143. (In Persian).
Rahmati O, Panahi M, Kalantari Z, Soltani E, Falah F, Dayal KS, Mohammad F, Ravinesh CD, Tiefenbacher J, Dieu TB. 2020. Capability and robustness of novel hybridized models used for drought hazard modeling in southeast Queensland, Australia. Science of The Total Environment. 718(134656): 1-9.
Sadeghian M, Karami H, Mousavi S. 2020. Evaluating the performance of time-series, neural network and neuro-fuzzy models in Prediction of Meteorological Drought (Case study: Semnan Synoptic Station). Irrigation Sciences and Engineering. 43(2): 1-18. (In Persian).
Shadmehri MM, Sharifi M, Ebrahimzadeh Ardestani V, Safari A, Baghani A. 2015. Inversion of gravity data using ant colony algorithm (case study: gotvand-iran). Journal of Geomatics Science and Technology. 4(4): 193-207. (In Persian).
Socha K, Dorigo M. 2008. Ant colony optimization for continuous domains. European Journal of Operational Research. 185(3): 1155-1173.
Wilhite DA, Glantz MH. 1985. Understanding: the drought phenomenon: the role of definitions. Water International. 10(3): 111-120.
Won J, Choi J, Lee O, Kim S. 2020. Copula-based Joint Drought Index using SPI and EDDI and its application to climate change. Science of the Total Environment. 744(140701):1-7.
Yerdelen C, Abdelkader M, Eris E. 2021. Assessment of drought in SPI series using continuous wavelet analysis for Gediz Basin, Turkey. Atmospheric Research. 260(105687): 1-14.
Zhang Y, Li W, Chen Q, Pu X, Xiang L. 2017. Multi-models for SPI drought forecasting in the north of Haihe River Basin, China. Stochastic Environmental Research and Risk Assessment. 31(10): 2471-2481.
Zuo DD, Hou W, Zhang Q, Yan PC. 2021. Sensitivity analysis of standardized precipitation index to climate state selection in China. Advances in Climate Change Research. 13(1): 42-50.