روند تغییر تراز و خشکسالی ذخیره‌های آب زیرزمینی در آبخیز کرخه

نوع مقاله : پژوهشی

نویسندگان

1 استادیار بخش بیابان، مؤسسه تحقیقات جنگل ها و مراتع کشور، سازمان تحقیقات آموزش و ترویج کشاورزی، تهران، ایران

2 استادیار دانشکده زمین شناسی، پردیس علوم، دانشگاه تهران

چکیده

مدیریت منبع‌های آب در کشورهایی هم­چون ایران با اقلیم خشک و نیمه‌خشک به دلیل تغییر اقلیمی کره ­­ی زمین و افزایش جمعیت ضروری است. بررسی خشک­سالی‌ آب­ های زیرزمینی و عامل‌های مؤثر بر افت تراز آب‌های زیرزمینی برای یافتن راه‌کارهای آن‌ها حیاتی است.  برای بررسی روند تغییر آب زیرزمینی و ارزیابی تاثیر خشک­سالی‌های گوناگون بر هم در آبخیز کرخه شاخص ­های خشک­سالی GRI، SPEI و SDI در دوره ­ی داده‌برداری 11 ساله (1395-1385) تجزیه و تحلیل شد. نتیجه‌ نشان داد که در بیش‌تر مناطق با خشک‌سالی اقلیمی، خشک­سالی آب‌شناسی نیز با هماهنگی و انطباق خوبی رخ داده‌است. میانگین شاخص GRI در محدوده‌های بررسی‌شده‌ی آبخیز کرخه نشان‌دهنده ­ی خشک­سالی ملایم برای محدوده‌های سنقر، نهاوند، صحنه، هرسم، خرم‌آباد، تویسرکان، اسدآباد، ملایر، بیستون- دیناور، میان‌راهان و حسن‌آباد- قلعه شیان است. در محدوده‌های بررسی‌شده‌ی چغلوندی، کوهدشت، کنگاور، اسلام‌آباد غرب، روانسر- سنجابی، کرمانشاه و ماهیدشت، خشک­سالی‌های شدیدتری با شاخص خشک­سالی به ترتیب 1/08-، 1/13-، 1/21-، 1/23-، 1/25-، 1/31- و 1/35- تشخیص داده شد، که نشان‌دهنده‌ی کاهش تراز ایست‌آبی و افزایش عمق آب زیرزمینی است. شاخص GRI در این دوره در شرق، غرب و مرکز آبخیز نمایان‌تر است، و در سال‌های پایانی محدوده‌های مرکزی درگیر خشک­سالی‌های شدید‌تری شده‌اند. این انطباق در نقشه ­ی پهنه‌بندی SPEI دیده می‌شود. علاوه بر این در برخی موارد برداشت‌های بی‌رویه به نسبت تاثیر بیش‌تری در افت تراز آب دارند. بنابراین ایجاد مدیریت یکپارچه برای پایداری منبع‌های آب زیرزمینی به‌خصوص در بخش کشاورزی، و اصلاح مدیریت شیوه‌های سنتی برداشت آب زیرزمینی الزامی است. قبل از این‌که خشک­سالی‌های هواشناسی و در ادامه­ آن خشک­سالی‌ منبع‌های آب سطحی بر افت تراز آب زیرزمینی تاثیرگزار شود، اقدام‌های لازم برای جلوگیری از اثرهای بد بر منبع‌های آب انجام شود.

کلیدواژه‌ها


عنوان مقاله [English]

The Trend of Groundwater Variations and Drought in the Karkheh Watershed

نویسندگان [English]

  • Samira Zandifar 1
  • Fatemeh Dargahian 1
  • Elham Fijani 2
  • Maryam Naeimi 1
1 Assistant Professor, Desert Research Division, Research Institute of Forests and Rangeland, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
2 Assistant Professor of Hydrogeology, School of Geology, College of Science, University of Tehran, Tehran, Iran
چکیده [English]

Water resources management is essential in countries, such as Iran, with arid and semi-arid climates due to global climate change and population growth. Knowledge of hydrogeological droughts and effective factors on groundwater drawdown is essential in providing management solutions for these vital resources. Therefore, the purpose of this study was to analyze the trend of groundwater variations and assessment of groundwater shortage in the Karkheh Watershed using the SPEI, SDI and GRI drought indices in an eleven -year statistical period (2006-2017). The results indicated that in most of the study areas, there was a correlation between the SPEI and SDI indices. The mean values of the GRI index in the study area of Karkheh watershed area show weak drought for the Sanghar, Nahavand, Sahneh, Hersam, Khorramabad, Tuyserkan, Asadabad, Malayer, Biston-Dinavar, Mian Rahan and Hassanabad-Qala-e-Shian areas. A more severe drought with the drought indices of -1.08, -1.13, -1.21, -1.23, -1.25, -1.31 and -1.35 was determined for Chaghloundi, Kuhdasht, Kangavar, Islamabad Gharb, Ravansar-Sanjabi, Kermanshah and Mahidasht respectively. These indicates a decrease in the water level elevation and an increase in the depth to the groundwater in these areas. The GRI drought index is more visible during the ten-year statistical period in the east, west and center of the Karkheh Catchment Area; while in the last years of this period, the central areas of the catchment had been affected by more severe droughts, which may be confirmed by the SPI zoning map. Although in most cases climatic drought, and consequently hydrological drought had caused the depletion of groundwater level in the basin, the results of comparison between the two types of drought indicated the effectiveness of other factors such as exploitation of the groundwater resources. Therefore, it is necessary to establish an integrated management for the sustainability of groundwater resources, especially in the agricultural sector, as well as reforming the management of traditional groundwater abstraction systems, before meteorological droughts and subsequent surface water shortages affect groundwater levels.

کلیدواژه‌ها [English]

  • GRI drought index
  • groundwater drawdown
  • Karkheh Watershed
  • SDI drought index
Bazrafshan J, Khalili A. 2013. Spatial analysis of meteorological drought in Iran from 1965 to 2003. Desert. 18(1): 63–71.
Brocque A, Kath J, Smith K. 2018. Chronic groundwater decline: A multi-decadal analysis of groundwater trends under extreme climate cycles. 561: 976–986.
Chen Z, Grasby S, Osadetz KG. 2004. Relation between climate variability and groundwater level in the upper carbonate aquifer, south Manitoba, Canada. Journal of Hydrology. 290: 62–43.
Eskandari Damaneh H, Zehtabian Gh, Khosravi R, Azareh H. 2016. A. Investigation and analysis of temporal and spatial relationship between meteorological and hydrological drought in Tehran Province. Scientific- Research Quarterly of Geographical Data (SEPEHR), 24(96): 113–120. (In Persian).
Easterling DR, Karl TR, Mason EH, Hughes PY, Bowman DP. 1996. United states historical climatology network (U.S. HCN) monthly temperature and precipitation data. ORNL/CDIAC-87, NDP-019/R3, Carbon Dioxide information analysis center, Oak Ridge National Laboratory, Oak Ridge, TN, 280 p.
Fernandez B, Salas JD. 1999a. Return period and risk of hydrologic events. I: Mathematical formulation. ASCE J. Hydrol. Eng., 4(4): 297–307.
Halder S, Roy MB, Roy PK. 2020. Analysis of groundwater level trend and groundwater drought using Standard Groundwater Level Index: A case study of an eastern river basin of West Bengal, India. SN Appl. Sci. 2(507).
Hellwig J, de Graaf IEM, Weiler M, Stahl K. 2020. Large scale assessment of delayed groundwater responses to drought. Water Resource. 56(2): 1–28.
Heydari M, Farrokhi E, Tanian S, Hesari B. 2009. Analysis of meteorological and hydrological drought by the use of DIP software Areas to be studied: Urmia and Khoy. Fifth National Conference on Iran Watershed Management Science and Engineering. 114 p. (In Persian).
Hu Q Wilson G D. 2000. Effect of temperature anomalies on the Palmer drought severity index in the central United States, International Journal of Climatology, 20(1): 1899-1911.
Hydrological Studies of Jarahi Watershed. 2019. Comprehensive Dust Study of Khuzestan, Research Institute of Forests and Rangelands. 220 p. (In Persian).
Karimi V, Kamkar-Haghighi A, Sepaskhah A, khalili D. 2005. An evaluation of meteorological drought in Fars Province. Journal of Water and Soil Science, 5(4):1–11. (In Persian).
Kashefi M. 2008. Zoning and drought risk management in Semnan Province. MSc thesis. Gorgan University of Agricultural Sciences and Natural Resources. 167 p. (In Persian).
Khosravi Dehkordi A, Mirabbasi R, Samadi Boroujeni H, Ghasemi Dastgerdi AR. 2019. Monitoring and forecasting of groundwater drought in Shahrekord Plain using groundwater resource index (GRI) and Markov chain model. Hydrogeology, 4(1): 111–125. (In Persian).
Liu L, Hong Y, Bednarczyk CN, Yong B, Shafer MA, Riley R. 2012. Hydro climatological drought analyses and projections using meteorological and hydrological drought indices: a case study in Blue River Basin Oklahoma. Water Resources Management, 26(10): 2761–2779.
Mair A, Fares A. 2010. Influence of groundwater pumping and rainfall spatio-temporal variation of stream flow. Journal of Hydrology. 393(3–4):287-308.
McKee TB. Doesken NJ. Kleist J. 1993. The relationship of drought frequency and duration to time scales. Eight Conference On Applied Climatology, Anaheim, CA, American Meteorological Society, 179–184.
Mendicino GA, Senatore P, Versace A. 2008. A groundwater resource index (GRI) for drought monitoring and forecasting in a Mediterranean climate. Hydrology Journal. 357(3–4): 282–302.
Ministry of Energy, Jamab Consulting Engineers Co. 1991. Comprehensive water plan of the country groundwater resources of Karkheh Catchment Area. 419 p.
Mirakbari M, Mortezaii G, Mohseni M. 2018. Investigation of effect meteorological drought on surface and ground water resources by Indices SPI, SPEI, SDI and GRI. Journal of Watershed Management Science and Engineering. 12(42):70–80. (In Persian).
Mofidipoor N, Brady Sheikh V, Ownegh M, Sydaldyn A. 2011. The analysis of relationship between meteorological and hydrological droughts in Atrak. Watershed Jwmr. 3(5): 16–26. (In Persian).
Mohamadi S, Salajegheh A, Mahdavi M, Bagheri R. 2012. An ivestigation on spatial and temporal variations of groundwater level in Kerman Plain using suitable geostatistical method (During a 10-year period). Iranian journal of Range and Desert Reseach. 19(1): 61–70. (In Persian).
Nayak P, Satyaji R, Sudheer KP. 2006. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management, 2: (1): 77–99.
Nikbakht J, Moradi I. 2019. Effect of drought on Hashtgerd Plain groundwater quantity and quality considering irrigation use. Iran-Water Resources Research 14(4):120–131. (In Persian).
Piri H, Ansari H. 2013. Study of drought in Sistan Plain and its impact on Hamoun International Wetland. Wetland Ecobiology. 5 (1): 63–74. (In Persian).
Quiring SM. 2009. Monitoring drought: An evaluation of meteorological drought indices. Texas A&M University. Geography Compass, 3 (1): 64–88.
Richard RH. 2002. A review of twentieth century drought Indices used in the United States. American Meteorological Society, pp. 1149–1165.
Seif M, Mohammadzade H, Mosaedi A. 2012. Assess the impact of drought on groundwater resources in Fasa aquifer using standardized precipitation pndex, A measure of electrical conductivity of groundwater resources. Journal of Water Resources, 5(1): 45–59.
Soleimani Sardoo F, Bahremand A. 2014. Hydrological drought analysis using SDI index in Halilrud Basin of Iran. Journal of Environmental Resources Research. 2(1): 47–56.
Thornthwaite C.W. 1948. An approach toward a rational classification of climate. Geographical Review. 38(1):55-94.
Van Loon AF. 2013. On the propagation of drought, Ph.D. Dissertation. Wageningen University 210 p.
Vicente-Serrano SM, Beguer’ia S, López-Moreno JI. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate. 23(7):1696–1718.
Yasamani S, Mohammadzadeh H, Mosaedi A. 2012. Effect of drought on groundwater levels in Torbatjam Plain using indices SPI and GRI. 6th Congress of Geological Society of Iran. Shiraz: Shiraz University, pp. 120–141 (In Persian).
Zareii H, Kalantari N, Nadri A. 2017. Climate changes effects on quantity and quality conditions of the bibitalkhone Karstic Spring, Lali Khuzestan. Hydrogeology. 2(2): 1–16. (In Persian).
Zhang L, Jiaoa W, Zhanga H, Huanga C, Tonga Q. 2017. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sensing of Environment. 190(2): 96–106.
zynali B, Asghari Saraskanroud S, Saffarian Zangir V. 2017. Monitoring and forecast of drought in Urmia Lake Basin by SEPI Index and ANFIS Model. Journal Spatial analysis of environmental hazards. 4 (1): 73–96. (In Persian).